1	(a)	$(0.5 \times) 9.3 \times 14.7 \times \sin 106$ or		2	M1 for applying the area of a triangle formula using correct values
		$(9.3 \times \cos 16) \times 14.7 \text{ or}$			(to find half of the area of the parallelogram) or
		$(9.3 \times \sin 74) \times 14.7$			for a correct method to find the area of the parallelogram
			131		A1 awrt 131
	(b)	$(GE^2 =) 9.3^2 + 14.7^2 - 2 \times 9.3 \times 14.7 \times \cos 106$		3	M1 for the correct use of the cosine rule
		377(.9) or 378 or 86.49 + 216.09 + 75.3 or			M1 (dep on M1) for the correct order of operations
		302.58 + 75.3			
			19.4		A1 for 19.4 – 19.5
					Total 5 marks

2	$\sin 42 = \frac{6.5}{x} \text{ or } \frac{x}{\sin 90} = \frac{6.5}{\sin 42}$ or $\cos 48 = \frac{6.5}{x}$ [where $48 = 180 - 90 - 42$]		3	M1	or use of tan to find the horizontal side and then a correct first step in Pythagoras' theorem ie [base =] $\frac{6.5}{\tan 42}$ (= 7.21) and [x^2 =] 6.5 ² + "7.21" ²
	$[x =]$ $\frac{6.5}{\sin 42}$ or $\frac{6.5 \sin 90}{\sin 42}$ or $[x =]$ $\frac{6.5}{\cos 48}$ [where $48 = 180 - 90 - 42$]			M1	or complete method using Pythagoras $[x =]\sqrt{6.5^2 + "7.21"^2}$ (If students give this statement with nothing before it they gain M2)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	9.7		A1	accept 9.7 – 9.72 Total 3 marks

3	[ADC =] 180 – 98 (= 82)		6	M1	may be seen on diagram
	$[AC^2 =] 8^2 + 7.5^2 - 2 \times 8 \times 7.5 \times \cos(98) (= 136.95)$			M1	correct equation for AC or AC^2
	$[AC =] \sqrt{136.95}$ or $\sqrt{64 + 56.25 + 16.7} (= 11.7)$ oe			M1	complete method to find AC showing correct order of operations
	eg $[AD = \frac{"11.7" \sin 35}{\sin"82"}$ (= 6.77) or $[DC = \frac{"11.7" \times \sin"63"}{\sin"82"}$ (=10.5)oe (where "82" = 180 - 98, "63" = 180 - "82" - 35)			M1	correct calculation for <i>AD</i> or <i>DC</i> dep on 1 st M1 and 2 nd M1
	eg $[AD =] \frac{"11.7" \sin 35}{\sin "82"}$ and $[DC =] \frac{"11.7" \sin "63"}{\sin "82"}$ oe or $[AD =] \frac{"11.7" \sin 35}{\sin "82"}$ and $[DC =] \sqrt{"11.7"^2 + "6.77"^2 - 2 \times "11.7" \times "6.77" \times \cos "63"}$ $[DC =] \frac{"11.7" \sin "63"}{\sin "82"}$ and $[AD =] \sqrt{"11.7"^2 + "10.5"^2 - 2 \times "11.7" \times "10.5" \times \cos 35}$ Where "63" = 180 - "82" - 35			M1	correct calculations for AD and DC (AD = 6.77 DC = 10.5) dep on 1 st M1 and 2 nd M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	32.8		A1	accept 32.7 – 32.9
					Total 6 marks

4	$(BC^2 =) 150^2 + 275^2 - (2 \times 150 \times 275 \times \cos 120) (= 139375)$		5 M1	for correct substitution into the cosine rule
'	$(BC =) \sqrt{150^2 + 275^2 + 41250}$ oe or $\sqrt{139375}$ or $25\sqrt{223}$ or 373		M1	
4	e.g. $\frac{\sin ABC}{275} = \frac{\sin 120}{"373"}$		M1	(dep on 1 st M1) ft 373
	or $275^2 = 150^2 + "373"^2 - (2 \times 150 \times "373" \times \cos ABC)$ or $\cos ABC = \frac{150^2 + "373"^2 - 275^2}{2 \times 150 \times "373"}$ or $\frac{\sin ACB}{150} = \frac{\sin 120}{"373"}$			for a correct trig statement involving angle ABC or angle ACB
	or $150^{\circ} = 275^{\circ} + "373"^{\circ} - (2 \times 275 \times "373" \times \cos ACB)$ or $\cos ACB = \frac{275^{\circ} + "373"^{\circ} - 150^{\circ}}{2 \times 275 \times "373"}$			
·	$(ABC =) \sin^{-1} \left(\frac{\sin 120}{"373"} \times 275 \right) (= 39.6)$		M1	for a complete method to find angle <i>ABC</i> or angle <i>ACB</i>
	or $(ABC =)\cos^{-1}\left(\frac{150^2 + "373"^2 - 275^2}{2 \times 150 \times "373"}\right) (= 39.6)$			ACB
	or $(ACB =) \sin^{-1} \left(\frac{\sin 120}{"373"} \times 150 \right) (= 20.3)$			
	or $(ACB =) \cos^{-1} \left(\frac{275^2 + "373"^2 - 150^2}{2 \times 275 \times "373"} \right) (= 20.3)$			
		140	A1	accept 140 - 140.4
				Total 5 mar

5	I I	$\frac{(AD =)\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}}{6 \sin 25} (= 5.07) \text{ or } \frac{6 \sin 50}{\sin 65} (= 5.07) \text{ oe}$		6	M1	Correct expression for AD ie $AD = \dots$ or $x = 0$ e
		$6+6+\sqrt{6^2+6^2-2\times6\times6\times\cos(50)}$ or $12+$ "5.07" 17.0)7 or 17.1)			Ml	A correct statement of perimeter of triangle <i>OAD</i>
	eg	$(\operatorname{arc} BC =) \frac{50}{360} \times \pi \times 2 \times (6+x) \text{ oe}$			M1	A correct statement for arc BC (condone missing brackets around $(6+x)$ for this mark only)
	eg	$2 \times 17.1 = 12 + 2x + \frac{50}{360} \times \pi \times 2 \times (6 + x)$ oe			M1	dep on M3 for a correct equation for x
	eg	$2 \times 17.1 - 12 - \frac{30}{18}\pi = 2x + \frac{5x}{18}\pi$			M1	isolating terms in x in a correct equation
			5.89		A1	5.88 - 5.89
						Total 6 marks

6	$(AC^2 =) 9.7^2 + 12.3^2 - 2 \times 9.7 \times 12.3 \times \cos 115$		5	M1 for the correct use of cosine rule
	$(AC^2 =) 346(.2)$ or $(AC =) \sqrt{346(.2)}$ or 18.6			A1 for 346 or $\sqrt{346(.2)}$ or 18.6
	$\frac{\sin x}{9.7} = \frac{\sin 115}{\sqrt{346}} \text{ oe or}$ $9.7^2 = \sqrt{346}^{1/2} + 12.3^2 - 2 \times \sqrt{346}^{1/2} \times 12.3 \times \cos x \text{ or}$ $\frac{1}{2} \times 9.7 \times 12.3 \times \sin 115 = \frac{1}{2} \times 12.3 \times \sqrt{346}^{1/2} \times \sin x \text{ oe}$			M1 use of their AC dep on first M1 for correct use of sine rule or cosine rule or for setting up an equation using the area of a triangle formula to find $\sin x$
	$\sin x = 9.7 \times \frac{\sin 115}{\sqrt{346}} \text{ oe or } \sin x = 0.47\text{ or}$ $\cos x = \frac{\sqrt{346} + 12.3^2 - 9.7^2}{2 \times \sqrt{346} + 12.3} \text{ or } \cos x = 0.88$			M1 use of their AC dep on first M1 Allow $(x =) \sin^{-1}()$ or $(x =) \cos^{-1}()$
		28.2		A1 awrt
				Total 5 marks

7	$\frac{1}{2} \times 45 \times 36 \times \sin'C' \ (= 405)$	alternative $\frac{2 \times 405}{36} (= 22.5)$ or $\frac{2 \times 405}{45} (= 18)$		5	M1 correct substitution into the sine area formula, with their choice of symbol to represent <i>C</i> . or work out the perpendicular height with <i>BC</i> or <i>CD</i> as the base.
	$\sin'C' = \left(\frac{405 \times 2}{45 \times 36}\right)('C' = 30)$ oe	$\sqrt{45^2 - 22.5^2} \left(= \sqrt{1518.75} = 38.97 \right)$ or $\sqrt{36^2 - 18^2} \left(= \sqrt{972} = 31.17 \right)$			M1 correct rearrangement to make sin <i>C</i> the subject or use Pythagoras with their found perpendicular height.
	$(BD =) \sqrt{45^2 + 36^2 - 2 \times 45 \times 36 \times \cos^3 30^7}$ $(= \sqrt{3321 - 3240 \times \cos^3 30^7})$ $(= \sqrt{515.077} = 22.695)$	$\sqrt{(38.97'-36)^2 + 22.5^2} \left(= \sqrt{515.077} \right)$ or $\sqrt{(45'-31.17)^2 + 18^2} \left(= \sqrt{515.077} \right)$			M1 (dep on 1st M1, ft 30) correct expression for <i>BD</i> ft their <i>C</i> (must be less than 90°). or use Pythagoras to find an expression for <i>BD</i> .
	$\cos' ABD' = \left(\frac{22.695^2 + 19^2 - 28^2}{2 \times 22.695 \times 19}\right)$ leading to 'ABD' =				M1 for a complete method to find angle <i>ABD</i>
	or $(BAD =) \cos \left(\frac{28^2 + 19^2 - '22.695'^2}{2 \times 28 \times 19}\right)$ $(= 53.7) \text{ and}$ $\sin' ABD' = \frac{\sin' 53.7'}{'22.695'} \times 28$ leading to 'ABD' =				
			83.9		A1 accept 83.85 – 83.9
					Total 5 marks

8	eg sin 65 = $\frac{AB}{8.4}$ or $\frac{AB}{\sin 65} = \frac{8.4}{\sin 90}$		3	M1	for setting up a trig equation in AB
	eg $(AB =)$ 8.4sin65 or $(AB =)$ 8.4sin65 $\sin 90$			M1	for a complete method
		7.61		A1	accept 7.61 - 7.613
					Total 3 marks

9	$\frac{\sin Q}{4.2} = \frac{\sin 18}{1.6} \text{ oe or}$ $1.6^2 = 4.2^2 + RQ^2 - 2 \times 4.2 \times RQ \times \cos 18 \text{ oe}$		6	M1	correct sine ratio - could be rearranged or correct substitution into the cosine rule using angle R
	$\sin^{-1}\left(4.2 \times \frac{\sin 18}{1.6}\right) $ (= 54.2) or $\sin^{-1}\left(0.811\right)$			M1	
	$\frac{2 \times 4.2 \times \cos 18 \pm \sqrt{(2 \times 4.2 \times \cos 18)^2 - 4 \times 1 \times 15.08}}{2}$				
	180 - 54.2" (=125.8) or $RQ = 3.0585$ and 4.933			M1	This can be implied by the correct value(s) (125.8 or 3.0585) used later
	(P =) 180 -"125.8" - 18 (=36.2)			M1	
	$RQ = \sqrt{4.2^2 + 1.6^2 - 2 \times 4.2 \times 1.6 \times \cos"36.2"}$ (= 3.0585)				
	or 3.0585 chosen as value from cosine rule above				
	perpendicular height = 4.2sin"36.2" (= 2.4805) (where "36.2" comes from correct working)				
	(Area =) $\frac{1}{2} \times 4.2 \times 1.6 \times \sin("36.2")$			M1	
	or				
	$(Area =) \frac{1}{2} \times 4.2 \times "3.0585" \times sin18$				
	or				
	(Area = $)\frac{1}{2} \times 1.6 \times "2.4805"$				
		1.98		A1	awrt 1.98
					Total 6 marks

10	eg $(x+5)(5x-12) = x(x+12)$		5	M1	for setting up a correct equation
	eg $4x^2 + x - 60 = 0$ oe allow $4x^2 + x = 60$			A1	for writing the correct quadratic expression in the form $ax^2 + bx + c = 0$
					allow $ax^2 + bx = c$
	eg $(4x-15)(x+4)(=0)$ or $\frac{-1\pm\sqrt{1^2-4\times4\times-60}}{2\times4}$ or $4\left[\left(x+\frac{1}{8}\right)^2-\left(\frac{1}{8}\right)^2\right]=60$ oe			M1	(dep on M1) for a complete method to solve their 3-term quadratic (allow one sign error and some simplification – allow as far as $\frac{-1\pm\sqrt{1+960}}{8}$) Allow + instead of \pm in quadratic formula
,	eg $(ADE =) \sin^{-1} \left(\frac{("3.75" + 5) \sin(48)}{"3.75" + 12} \right)$			M1	for a complete method for <i>ADE</i> . Allow use of $x = -4$ for this mark
•	Correct answer scores full marks (unless from obvious incorrect working)	24.4		A1	accept 24.3 – 24.4
					Total 5 marks

11	$\frac{\sin ABC}{24} = \frac{\sin 64}{31}$ oe		5	M1
	$(ABC =)\sin^{-1}\left(\frac{24 \times \sin 64}{31}\right) (= 44)$			M1
	180 – "44" – 64 (= 71.9)			M1 accept 72
	$(DE^2 =)16^2 + 19^2 - 2 \times 16 \times 19 \times \cos"71.9$ " or			M1 for DE^2 or DE
	$(DE =)\sqrt{16^2 + 19^2 - 2 \times 16 \times 19 \times \cos"71.9"}$ or			
	$(DE =)\sqrt{617 - 181.8} \text{ or } \sqrt{428.166}$			
	Correct answer scores full marks (unless from obvious incorrect working)	20.7		A1 awrt 20.7
				Total 5 marks

12	$\frac{\text{eg}}{2} \frac{1}{2} (2x-1)(2x+1)\sin 30 = x^2 + x - 3.75 \text{ oe}$		6	M1	for equating area of triangle with the given area
		3.5		A1	for the value of x
	$(BC^2 =) "6"^2 + "8"^2 - (2 \times "6" \times "8" \times \cos 30) (= 16.8(615)) \text{ oe}$ or $(BC =) \sqrt{"16.8"} (= 4.10(628))$			M1	ft dep on M1 for a correct method to find BC^2 or BC ($AB = 6$ and $AC = 8$)
	$\frac{\sin(ABC)}{"8"} = \frac{\sin 30}{\sqrt{"16.8"}} \text{ oe or } \frac{\sin(BCA)}{"6"} = \frac{\sin 30}{\sqrt{"16.8"}} \text{ oe or}$ $"6"^2 = "8"^2 + \left(\sqrt{"16.8"}\right)^2 - \left(2 \times "8" \times \sqrt{"16.8"} \times \cos(BCA)\right) \text{ oe or}$ $"8"^2 = "6"^2 + \left(\sqrt{"16.8"}\right)^2 - \left(2 \times "6" \times \sqrt{"16.8"} \times \cos(ABC)\right) \text{ oe}$			M1	ft dep on previous M1 for a correct method to find angle ABC or angle BCA
	$(\sin ABC =) \frac{\sin 30 \times "8"}{\sqrt{"16.8"}} (= 0.974)$ oe or $ABC = 76.9$ or			M1	ft dep on previous M1 for a correct rearrangement for sin ABC or sin BCA or
	$(\sin BCA =) \frac{\sin 30 \times "6"}{\sqrt{"16.8"}} (= 0.730) \text{ oe or } BCA = 46.9 \text{ or}$ $(\cos BCA =) \frac{"8"^2 + (\sqrt{"16.8"})^2 - "6"^2}{2 \times "8" \times (\sqrt{"16.8"})} (= 0.682) \text{ oe or } BCA = 46.9 \text{ or}$				cos BCA or cos ABC
	$(\cos ABC =) \frac{"6"^2 + (\sqrt{"16.8"})^2 - "8"^2}{2 \times "6" \times (\sqrt{"16.8"})} (= -0.226) \text{ oe or } ABC = 103.0$				
	Correct answer scores full marks (unless from obvious incorrect working)	103		A1	accept awrt 103
1					Total 6 marks

13	$9^2 = 11^2 + 16^2 - 2 \times 11 \times 16 \times \cos BCA$ oe or $11^2 = 9^2 + 16^2 - 2 \times 9 \times 16 \times \cos BAC$ or $16^2 = 9^2 + 11^2 - 2 \times 9 \times 11 \times \cos ABC$ or (area of $\triangle ABC = \sqrt{18 \times 2 \times 7 \times 9} (= 47.6235)$ oe		5	M1	For a start to the correct method to find angle <i>BCA</i> or angle <i>BAC</i> or angle <i>ABC</i> or a fully correct method to find the area of the triangle
	$(\cos BCA =) \left(\frac{11^2 + 16^2 - 9^2}{2 \times 11 \times 16}\right) (BCA = 32.763) \text{ or}$ $(\cos BAC =) \left(\frac{9^2 + 16^2 - 11^2}{2 \times 9 \times 16}\right) (BAC = 41.409) \text{ or}$ $(\cos ABC =) \left(\frac{9^2 + 11^2 - 16^2}{2 \times 9 \times 11}\right) (ABC = 105.826) \text{ or}$ $\frac{1}{2} \times 16 \times BD = "47.6235"$			M1	For a correct rearrangement for cosBCA or cosBAC or cosABC or a correct equation to find BD (accept angles to the nearest whole number rounded or truncated as long as not from incorrect working)
	$(BD =) 11 \sin"32.763" (= 5.95) oe eg$ $11 \sin(180 - "41.4" - 105.8") (= 5.95) or$ $9 \sin"41.4" (= 5.95) oe or$ $\frac{"47.6235" \times 2}{16} (= 5.95) oe or \sqrt{11^2 - "9.25"^2} \text{ or } \sqrt{9^2 - "6.75"^2}$ $11 \sin \left(\sin^{-1} \left(\frac{9 \sin"105.826"}{16} \right) \right) (= 5.95) oe$			M1	For a correct calculation that will lead to the value of BD "47.6235" may also come from $0.5 \times 9 \times 11 \times \sin"105.8$ " or $0.5 \times 9 \times 16 \times \sin"41.4$ " or $0.5 \times 16 \times 11 \times \sin"32.7$ " [Students may find an angle by sine rule after already finding an angle and use this]
	$\tan FDB = \frac{10}{"5.95"}$ oe				angle (in form $\tan x =$ or $\cos x =$ or $\sin x =$) oe
	Correct answer scores full marks (unless from obvious incorrect working)	59.2		Al	awrt 59.2
	SEE OVER FOR ALTERNATIVE SCHEME				Total 5 marks

Angle $DBC = 57.237$ Angle $ABD = 48.591$ $AD = 6.75 \text{ m}$ $CD = 9.25 \text{ m}$								
13	$BD^2 = 11^2 - (16 - y)^2$ and $BD^2 = 9^2 - y^2$ oe		5	M1	For 2 different expressions in the same single variable for BD or BD^2			
	$11^2 - (16 - y)^2 = 9^2 - y^2$ (y = 6.75 or x = 9.25)			M1	Equating the 2 expressions			
	$BD = \sqrt{9^2 - (16 - "9.25")^2} \text{ or } \sqrt{11^2 - "9.25"^2} $ (= 5.95)			M1	A correct calculation to find BD ("9.25" or "6.75" must come from a correct method)			
	$\tan FDB = \frac{10}{"5.95"}$ oe			M1	For a correct expression for the required angle (in form $\tan x =$ or $\cos x =$ of $\sin x =$) oe			
	Correct answer scores full marks (unless from obvious incorrect working)	59.2		A1	awrt 59.2			
					Total 5 marks			